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Determination of the differential cross section for a realistic intermolecular potential
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A method for obtaining the differential cross section for any realistic intermolecular potential (e.g., the
Lennard-Jones potential), is presented. This approach avoids ad hoc approximations, such as the finite-
range potentials and angular cutoffs, and can be used for accurate calculations of the transport
coefficients. It is shown that neither the hard spheres nor the soft spheres (variable hard spheres) models
are consistent with a realistic potential, even in the limit of large relative molecular velocity.
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I. INTRODUCTION

In abbreviated form, the Boltzmann equation for a
monatomic gas without internal degrees of freedom can
be written as

Df _
D LSS (1)

where Df /Dt =9 f /3t +cdf /9x, and I (f, f) denotes the
collision integral. Mass forces have been omitted. Here
as usually c is the molecular velocity, x and ¢ are space
and time coordinates, respectively, and f denotes the
probability distribution function. Characters in bold
fonts represent vectors.

The collision integral can be represented in two, not
entirely equivalent, forms. The stochastic form reads

16.0==f_["[ A (e —Fle)f(ey)]
Xw(s,g?)gdsdpdc, , (2)
whereas the deterministic form is
1g.0=[_[7 [ ()f ()= Fle)fe,)]
Xbgdbdpdec, . (3)

In both (2) and (3), ¢ and ¢, denote velocities of colliding
molecules before the collision, and ¢’ and c, velocities
after the collision, g =|c, —c|=|c, —c’| is the absolute
value of the relative velocity, ¢ is the azimuthal angle,
and the distribution function is also implicitly dependent
on x and t.

In the stochastic form, w(s,g?) denotes the density of
probability that the cosine of the deflection angle y after
the collision of two molecules having relative speed g will
be equal to s, s =cosy. The function w (s,g?2) is related to
the differential cross section o =0 (y,g2) by

w(s,g?)ds =—o(x,gl)sinydy . 4)
In the deterministic form of the collision integral, b

denotes the impact parameter. The main difference be-
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tween (2) and (3) arises from the fact that whereas in the
stochastic form the integration is carried over an “after-
the-collision” parameter s, in the deterministic form the
integration is performed over a “‘before-the-collision” pa-
rameter b.

For any given value of b and any spherically symmetric
intermolecular potential ®,®=®(r), the deflection angle
¥ can be calculated in the frames of classical mechanics
from the set of equations based on the first principles
(e.g., [1], Chap. 1). Thus for a given potential one can al-
ways find [see (A1) in Appendix A]

s =s(b,g?)= cosy(b,g?) . (5)

Almost all actually performed calculations for the full
Boltzmann equation employ the Monte Carlo computa-
tional method and are based on the deterministic form of
the Boltzmann equation. In the majority of these calcula-
tions it is assumed also that molecules are elastic spheres,
o =const, i.e., the hard spheres potential is used. Less
often, the soft spheres [or variable hard spheres (VHS)]
potential is employed, for which o =0(g?), [2], or its gen-
eralizations such as the generalized hard spheres (GHS)
[3] and the optimal VHS [4].

The main obstacle to using the stochastic form of the
Boltzmann equation is the difficulty of determining the
differential cross section o(6,g%), or, alternatively,
w(s,g?), for a realistic intermolecular potential. Once
the differential cross section is known, however, evaluat-
ing the collision integral in the stochastic form (2) is
much easier than using the deterministic form (3). In the
latter case, one needs to calculate the deflection angle Y
for each value of the impact parameter b in order to find
¢’ and c,, the step which is not necessary if (2) is used.

The aim of this paper is to describe a method of finding
w(s,g?) for an arbitrary intermolecular potential (the
salient idea of the method was briefly introduced in [5]).
Along the way, it is pointed out that neither the hard
spheres nor soft spheres potential represents a proper
limit of a realistic potential for collisions with relatively
high energy, as is commonly believed. Therefore, the va-
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lidity of the quantitative results obtained using these ap-
proaches remains suspect even in this limit.

II. NONMONOTONIC POTENTIALS

If the intermolecular potential ®=®(r) is monotonic,
the function inverse to s =s (b,g?2) in (5), b =b (s,g°), ex-
ists, and hence w (s, g2) can be expressed by
1

w(s,gz)zi

ab?

3s (6)

However, in the case of a nonmonotonic intermolecular
potential ®, the function s =s(b,g?) is nonmonotonic
also, and (6) ceases to be meaningful. Since all realistic
intermolecular potentials are nonmonotonic, (6) is of no
help in practical applications to real systems, and an al-
ternative approach must be developed.

Although the method presented here is not restricted
to any particular form of the potential, it is best to illus-
trate it with a specific intermolecular force in mind. In
what follows, the most common realistic potential, the
Lennard-Jones potential, is assumed. In the standard
nondimensional form, the 6-12 Lennard-Jones potential is
represented as

O(r)=4(r12—r~°), @)

where ®(r)=®'(r'/oy)/€’ and the dimensional quanti-
ties are denoted by primes. Here, €’ and o represent the
reference energy and the reference length characteristic
for the potential under consideration. In the remainder
of this paper, all variables without primes are nondimen-
sional. They are defined via the following: r=r'/oy
(and b=b"/0}), T=k'T' /¢, and g*=m'g'?/2¢’, where
m' is the molecular mass. Equations (1)—(6) can be con-
sidered as nondimensional, and therefore the lack of
primes in them (except those denoting velocities after the
collision) does not lead to inconsistencies.

Once the potential has been selected, the dependence of
the deflection angle y, or s, on the impact parameter b
(with the relative velocity of the molecules g as a parame-
ter) can be examined. Graphs of the function s =s(b, g2)
for the Lennard-Jones potential (7) are shown in Fig. 1.
(Similar graphs are given in [1], Fig. 120). These graphs,
as expected, are nonmonotonic, and therefore, again, the
inverse of s is not a well defined function.

On the other hand, (6) indicates that even when the
function b =b (s,g2) could be extracted, it would contain
more information than is actually needed to obtain
w(s,g?%), which is a probability density. This suggests
that one encodes the useful information contained in the
graphs of Fig. 1 by means of the integral quantity

Wi(s,g*)= fol_sbz(u,gz)du ) (8)

It should be noted that even though W does contain in-
formation about the inverse of s, it is always a well
defined monotonic function, no matter whether s (b, gz) is
monotonic or not (see Appendix B). In effect, it is a sum
of the probability densities for deflection through angles
smaller than a given angle. Once W is known, the func-

tion w (s,g) can be found by setting

w(s,g?)=—— . 9)

In the case of monotonic potential, this relation is
equivalent to (6). The point of the method is, however,
that W can be obtained in fact without the knowledge of
b =b(s,g?) by numerical integration of the known func-
tion s =s (b,g?) “inverse” to b (s,g?).

III. THE DIFFERENTIAL CROSS SECTION

When the Lennard-Jones potential (7) is used, the nu-
merical integration of (8) is easily performed for the case
g*>1. For g?<1, the function S (b,g?)=1—s(b,g?) ex-
hibits rapid oscillations after the initial monotonic de-
cline from 1 at b2=0 to 0 at b2<2; see Figs. 1(a) and
1(b). These oscillations, which grow in number when the
value of g decreases, correspond to the “trapping” effect.
By trapping one understands a collision in which the in-
coming particle (in the coordinate system attached to the
other one) is captured for a while and spins around the
“stationary” molecule. These loops are sometimes called
“Glory orbits” (for a classical treatment see, e.g., [6]; for
a semiclassical analysis see [7]). Although the number of
Glory orbits is always finite, it is not bounded as g de-
creases. One could in principle compute the integral in
(8) taking into account all the oscillatory behavior of the
function S(b,g) for g2 < 1. However, this is not neces-
sary.

This paper deals with the physical conditions for which
a gas can be described by the Boltzmann equation (1)
with (2), taking into account only binary collisions. It is
assumed that the gas is warm, with the temperature well
above 0 K. In a real system under such conditions, trap-
ping is extremely unlikely to occur, and a configuration
of two spinning molecules produced by a collision is un-
stable. Further, it is safe to assume that when a spinning
pair breaks apart, all scattering angles are equally prob-
able and hence the overall probability of scattering
through a given angle is not affected. Thus trapping can
be considered as a mathematical artifact of analyzing one
collision at a time, and there is no need to include all de-
tails of the “comb” in Figs. 1(a) and 1(b) when perform-
ing integration (8).

For similar reasons, one can limit the domain of g from
below, keeping in mind that g is a magnitude of the rela-
tive velocity of the particles when they are infinitely far
apart. On physical grounds, therefore, one can exclude
from considerations the region of very small g (g <<1).
The magnitude of this region depends on the temperature
of the gas and grows when the temperature increases.

In the evaluation of integral (8) employed here, oscilla-
tions in s (b,g?) were replaced by a straight line joining
the second local minimum of the function with the last
local maximum. Figure 2 shows the function W(s,g?)
for several values of g2. It is important to note that the
curves in Fig. 2 are not parabolic. They are steeper near
s =1 than the best fitting parabolas. Since the second
derivative of W (or curvature) is of physical interest, the
analytic approximation of W should be very accurate, for
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example using the method of splines. For illustrative
purposes, however, a less accurate approximation is
chosen here, leading to the function w in a simple, poly-
nomial form. This approach also makes the physical in-
terpretation of the resultant expression for w easier.

The function W is thus approximated for each g2 by a
polynomial in s by means of the least square method, re-
quiring W,,(1,g?)=0 for all g. In trying these approxi-
mations, it is easily seen that polynomials of the second
and third order do not give satisfactory results but the
approximation of the fourth order is accurate to less than
1%. Only for large values of g2 (g2> 10), and in the re-
gion close to s =1, the fourth order approximation is not
very accurate. This is due to the presence of a flat hump
seen in Fig. 1(f). The use of still higher order polynomials
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does not substantially change the accuracy of the approx-
imation, and leads to undesirable wiggles superimposed
on the curves. Thus it is useful to set

4
W(s,g?)= 3 a;(ghs’, (10)
i=o

where a;(g?) are coefficients computed separately for
each g2. The coefficients a, and a, in expansion (10) are
of no consequence so far as the calculations of the sto-
chastic function w(s,g?) are concerned. The other three
coefficients a,(g?2), a;(g?), and a,(g?) are plotted in Figs.
3(a)-3(c). It is seen that these functions are not mono-
tonic with respect to g2 they all have a local maximum
near g2=1, fall down to a local minimum, rise steeply
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FIG. 1. Deflection 1—s as a function of the impact parameter for the Lennard-Jones potential, for several values of the relative
molecular velocity g2. (a) g2=0.6. (b) g2=0.8. (c) g2=1.0. (d) g2=2.0. (e) g?=5.0. () g2=10.0. The dashed line represents the
deflection for the hard spheres potential. All variables, in these and the following graphs, are normalized.
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FIG. 2. The function W plotted vs 1—s for several values of
the relative molecular velocity g2. The continuous line
represents the result for the hard spheres potential.
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FIG. 3. Coefficients of the fourth order polynomial approxi-
mation of W plotted vs the relative molecular velocity g2. (a)
Coefficient a,. (b) Coefficient a;. (c) Coefficient a,.

near g2=2, and then level off. This behavior near g2=1
is due to the qualitative transition in scattering curves
seen at this value of g2 in Fig. 1(c).

Bypassing the details of Glory orbits (or the trapping
effect) is not central to the proposed method and is only a
matter of convenience, simplifying calculations. All the
steps outlined here can be repeated replacing the present-
ed evaluation of integral (8) with a numerical method of
one’s choice. On the other hand, since the oscillations
corresponding to Glory orbits, such as those shown in
Figs. 1(a)-1(c), are symmetrical with respect to s =0 and
are localized over a small range of values of b2, the nu-
merical effect of neglecting them is marginal. Whether
these loops are included or not, the physics of the realis-
tic intermolecular potential, including its attractive part,
is fully retained.

To further emphasize this point, it is instructive to re-
peat the calculations for a potential that does not include
the attractive part of the Lennard-Jones interaction, tak-
ing, for example, the potential given by ®=4r"1/2in a
normalized form. As expected, the resulting functions
s(b,g?), with b treated as a parameter, are ‘monotonic
(Fig. 4). The corresponding functions W can now be ob-
tained equally easily as before, and one can show that all
coefficients a;(g?) entering approximations of these func-
tions are strictly monotonic. In fact, a; and a4 turn out
to be almost constant for this case.

It follows from (9) that the stochastic function w (the
differential cross section) is given by

w(s,82)=—a,(g?)—3a;(g?)s —6a,(g?)s? . (11)

Figure 5 contains plots of w for several values of g2, for
both the full Lennard-Jones potential and for the hard
spheres potential. For hard spheres, the function w is
constant and equal to %, as can be seen immediately from
(6) since in this case b =sinf or b2=(s +1)/2 (the radius
of the billiard balls has been normalized to 1). For the
Lennard-Jones potential, w (s,g2) is a family of parabolas
with (nonmonotonic) coefficients dependent on g?%; their
minima occur near s = —0.25 or 6=104°. It can be seen
from Fig. 5 that as g2 increases, the differential cross sec-
tion corresponding to the Lennard-Jones potential does
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FIG. 4. Deflection 1—s as a function of the impact parame-
ter b2 for several values of the relative molecular velocity g2, for
the repulsive part of the Lennard-Jones potential.
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FIG. 5. Scattering function w [related to the differential
cross-section via (4)] vs 1—s for several values of the relative
molecular velocity g. The continuous line represents the hard
spheres potential.

not tend to the hard spheres differential cross section.
For small relative velocities (g2 < 10), on the other hand,
hard spheres is a demonstrably inadequate approximation
of a realistic intermolecular potential.

IV. CHAPMAN-COWLING INTEGRALS

To illustrate how the present approach may be used for
accurate calculation of the transport coeflicients, the
Chapman-Cowling integrals Q!, Q2, and Q* are evalu-
ated in this section. In the current notation, these func-
tions are defined (compare [1], Eq. 8.2-3) as

1 _ 4( 1+ l ) 1

Q (g)—mfﬂ(l—s’)w(s,gz)ds :
Integrals Q' have been normalized with respect to the
hard spheres potential. They are the same as the
Chapman-Cowling functions ¢/(g) divided by g and mul-
tiplied by the factor in front of the integral in (12).

Once the functions Q’ are known, transport coefficients
can be calculated easily according to the approximation
scheme of Chapman and Cowling [8]. For example, the
first approximations to the coefficients of self-diffusion
D’, viscosity 7', and thermal conductivity A’ are con-
veniently given (in dimensional form) by

(12)

o VI KT SVam'K'T
8p'motQ! 1670 2Q? ’
— (13)
i 25V am'k'T’

Y R2rogm'Q?

where m’ is the molecular mass, k’ is the Boltzmann con-
stant, T’ is the temperature, p’ is the density, ¢/, is the
specific heat at constant volume, and

Iy 2 © 22 20+3nl
Q(T)—mfo e Ty T3Qle)dy (14)
with y2=m'g2/2k'T".

Figure 6 is a plot of Q!, @2, and Q* versus g2 obtained
from (12). As an alternative approach, one can sidestep
approximation (10) and compute the second derivative of
W directly, i.e., numerically. Figure 7 shows the

10.0 T T T

0.0 L 1 " 1 L 1

107! 10° 10" 102
g2

1072

FIG. 6. The Chapman-Cowling integrals Q', Q2% and Q* as
functions of g2, computed via approximation (11).

Chapman-Cowling integrals when this “direct” calcula-
tion of w is used in (12) instead of approximation (11).
For g2>0.2, functions Q2 and Q* in Figs. 6 and 7 are in
very good agreement with the values computed via a
different method by Hirschfelder, Curtis, and Bird in [1]
(Fig. 121). For Ql, the “direct” method is in excellent
agreement with Hirschfelder, Curtis, and Bird, whereas
approximation (11) leads to a more pronounced hump
near g2=1 in Fig. 6. It should be noted again that, using
a sufficiently accurate approximation of W, the
Chapman-Cowling integrals can be computed with arbi-
trary precision.

An interesting feature of the calculated functions Q'is

10.0 T T T

1 1 1

0.0 1 1 1
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FIG. 7. The Chapman-Cowling integrals Q*, Q?, and Q* as
functions of g2, computed by the “direct” method.
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their behavior for g2<0.1, which, to the author’s
knowledge, has never been evaluated before
(Hirschfelder’s calculations for 0.1<g2<0.2 are also
suspect). With the present method, the Chapman-
Cowling integrals can be obtained for their entire
domain. However, the values of these functions on the
disputed interval 0 <g?<0.1 will have negligible effect on
integral (14), and therefore on transport coefficients (13).

V. CONCLUDING REMARKS

The approximation defined by (10) requires several ad-
ditional comments. From (6) it follows that the integral

Jlotxgsinyax=—[" w(sghds=["bab, 5

expressing the total effective cross section, diverges.
Mathematically, this is due to the behavior of function
w(s,g2) close to s =1 [or the behavior of o(x,g?2) close to
x=0]. The physical reason for this divergence is the
infinite range of the intermolecular potential. A collision
of two molecules that are far apart changes only slightly
their trajectories. More precisely, the deflection angle x
is O(b~%) for the Lennard-Jones potential, or O (b ")
for a potential in the form ®(r)=r~",n >2 (see Appen-
dix A). These “grazing collisions” are responsible for the
rise of o close to Y =0. (Considered in the frame of quan-
tum theory, grazing trajectories are not well defined.)

To avoid the divergence mentioned above, it is some-
times assumed that the intermolecular potential acts only
at a finite, specified range. A more frequent approach is
to limit the integration over Y in the left-hand side of (15)
to angles greater than some small Y,>0. In either of
these two approaches, an arbitrary parameter is intro-
duced and it determines to some extent the end results.
The polynomial approximations (10) of W lead to a finite
value of w(s,g?) at s =1, and therefore automatically
avoid the difficulty of grazing collisions. Since these ap-
proximations are based on the behavior of W in the entire
domain on which it is defined (i.e., —1=<s <1), the arbi-
trariness of the finite-range potentials or the cutoff angles
is avoided. Only the accuracy of the approximate
method described here remains arbitrary, and it can be
chosen at will.

The problem of the divergence in (15) casts some doubt
on the outlined procedure of determining the function W,
and it should be carefully verified that the integral in (8)
in fact converges. The proof of this is given in Appendix
B.

It was already remarked in discussing Fig. 5 that, for
the Lennard-Jones potential, the molecules do not be-
come hard spheres in the limit of g2— . This can be
deduced already from Fig. 1(f). It is seen there that as the
values of g2 increase, the plot of S (b,g2)=1—52 does not
tend to the hard spheres limit shown by the dashed line in
the figure. The graph for hard spheres has a finite discon-
tinuity in the derivative at b =1, whereas the derivative
of S(b,g?) is always finite and equal to O at the first
minimum approaching b =0. The consequence of this
fact is shown also in Fig. 2, where the graph correspond-
ing to the hard spheres potential is also indicated.

One final point should be made. It was noted earlier

that a polynomial approximation of the function W re-
quired, for consistency, polynomials of at least fourth or-
der. It is significant that the second order approximation
in (10) would have been insufficient. Such an approxima-
tion would imply that the resulting function w(s,g?), as
given in (9), would depend only on g2 and not on s, as is
the case for the soft spheres. Indeed, the essence of the
soft spheres approximation is that scattering through any
angle is equally probable, and the effective cross section
depends only on g2 Equation (11) indicates, however,
that the cross section must in fact depend on s. Thus it is
shown that the VHS approximation is inconsistent with
the use of a realistic intermolecular potential.
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APPENDIX A

This appendix serves to derive an estimate of the
deflection angle Y in the limit of b — oo; that is, for graz-
ing collisions. It is assumed that the intermolecular po-
tential has the most common form ®(r)=r "~ ",n >2.

The deflection angle is given by the classical formula
(e.g., [1], Eq. 5.26)

x(b,gH)y=7—2b [ “r2h "' rydr , (A1)
where h(r)=1+ar "—b%r 2, and where the energy of
the molecule pair is assumed fixed. Here r,, represents
the root of A (r)=0, and a is a constant dependent on the
relative kinetic energy of the two molecules.

For a purely repulsive potential, @ <0. In the case of
the Lennard-Jones potential, the repulsive part can be ig-
nored in the limit of large b and therefore a >0 can be as-
sumed. Both cases will be considered, however.

The derivative of h (r) is

2 2
dh__ _na_ 26 2b?

rn+1 r3 r3

na 1
2b2 rn—2

dr

—-1|. (A2)

If a >0, h(0)=o0, h(o)=1, and the function has one
extremum (minimum). At any point r* € (0, ) one can
find b large enough so that A (r*)<0. Thus for each
value of b there are two roots of the equation h (r)=0.
Only the larger of the two roots is of interest, since only
for it the function 4 remains positive in the limits of in-
tegral (A1). This root is denoted r,, =r,,(b).

For a <0, h(0)=— o, h(w)=1, and h'(r)>0. In
this case there exists only one root of the equation
h (r)=0, and it is denoted again by r,,.

In both cases, for any given value r =r there exists a
value of b, say b, such that r,,(b)>r, for all b >b,. In
other words,

lim 7, (b)=o . (A3)

b oo
From the expression for A (r), and the definition of r,,, it
follows that
2
LA (A4)
7 (D) ry(b)
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and hence, from (A3),

7. (b)
. =1
blgr:o b

(AS)

Relation (AS5) can be used to obtain a more accurate esti-
mate of b /r,,(b). Solving (A4) for a, and then using (AS5),
yields

b 1+ 9

r(6)  2b"

1

bn+l

+0 (A6)

Now, by setting r =tr,,, the integral in expression (A1)
can be rewritten

© 2
n=-=7 t_2[1+ a___b
r 91

-1/2
dt . (A7)
rot" r,f,t2 ]

Therefore, using (A6), in the limit of b — o,

w dt _
bIl"’fl 21—t )12 2 (A8)
and, from (A1),
blim x(b,g>)=0. (A9)

Equation (A9) is expected on physical grounds. A more
precise estimate of } can be obtained by observing that
h(r)=1—t"24+0(b ") for b— o and r =tr,,, uniform-

ly on the interval 1 <¢ < . Thus also
R Vr)=(1—t")"2+0(b ™", (A10)

uniformly for . Comparing with (A8), one obtains finally

x(b,g?)=0(b™") (A11)

for grazing collisions.

APPENDIX B

It will be shown here that the integral defined in (8) is
uniformly convergent provided &®(r) decreases fast
enough. The proof will be given, again, for a potential in
the form ®(r)=r ", n > 2.

Estimate (A11) allows one to show that for any B >0
the integral

I,= [ S(b,g*db’ (B1)

is uniformly convergent in the upper limit, that is to say,
the integration over the “tail” in Figs. 1(a)-1(f) does not
lead to infinities. To this goal, it is sufficient to note that

S (b,g?)=1— cosy(b,g®)=0(b"2"), (B2)

where the cosine was expanded in the power series and
(A11) was used. It therefore follows that I, < «. Now
let

S
= [ bs,gds . (B3)

For any S, large enough so that 52 is monotonic on the
interval (0,S,), there exists a B, such that S (B,,g%)=S,.
Since S (,g2)=0, or b*(0,g2)= oo, it follows from gen-
eral properties of the definite integrals that with B =B,
I,=I,< . In other words, integral (8) is uniformly
convergent.
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